翻訳と辞書 |
Isotomic conjugate : ウィキペディア英語版 | Isotomic conjugate In geometry, the isotomic conjugate of a point ''P'' with respect to a triangle ''ABC'' is another point, defined from ''P'' and ''ABC''. ==Construction==
We assume that ''P'' is not collinear with any two vertices of ''ABC''. Let ''A''', ''B''' and ''C''' be the points in which the lines ''AP'', ''BP'', ''CP'' meet sidelines ''BC'', ''CA'' and ''AB'' (extended if necessary). Reflecting ''A''', ''B''', ''C''' in the midpoints of sides ''BC'', ''CA'', ''AB'' will give points ''A''", ''B''" and ''C''" respectively. The isotomic lines ''AA''", ''BB''" and ''CC''" joining these new points to the vertices meet at a point (which can be proved using Ceva's theorem), the ''isotomic conjugate'' of ''P''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Isotomic conjugate」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|